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Problem Description

In the service life of a helicopter, numerous encounters with clear-air
or thunderstorm turbulence can be expected. Furthermore, because of the very
nature that lift is generated by blade rotation, some level of self-created
turbulence i8 also unavoidable. Therefore, random turbulence in the
atmosphere should be included in a realistic analysis of helicopter dynamics.

The theoretical investigation reported in this document is concerned with
the behavior of rotor blades in a turbulent flow. Specifically, answers are
sought to two questions: (1) how does turbulence affect the motion stability
of a blade system? (2) if the motion is stable, then by what amount does it
deviate from that computed from a deterministic analysis in which the

turbulence is ignored?

Mathematical Models

A. Structural Models
A-1, Three types of motion are considered: uncoupled flapping, coupled

flapping and torsion, coupled flapping and lagging.
For flapping and lagging, the blades are assumed to be rigid and
centrally hinged, with elastic restraints at the hinge. The
degree of structural coupling between flapping and lagging is
represented by a coupling parameter.
For torsional motion, the blades are assumed to be elastic and
the torsional angle varies spanwise linearly.
The mass and elastic centers coincide along the one-quarter chord
line.

B. Aerodynamic Models

B-1. Flow is incompressible and sectionally two dimensional; i.e. the
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spanwise flow is neglected.

B-2. Forces acting on a blade are computed from the steady aerodynamic
!! theory for flapping and lagging motions, and from the quasi-
. steady aerodynamic theory for torsional motion.
'f B-3. The l1ift slope is the same constant in the normal and reversed
-~ flows.
" B-4. Flow separation and stall do not occur.
EE C. Turbulence Model
C-1. Turbulence field is statistically stationary in time and
homogeneous in space; i.e. the statistical properties are
- unchanged with respect to the change of time and spatial
r coordinate orgins.
;E C-2, The speed of a rotor blade (rotation plus forward motion) is much
‘ greater than the convection speed of the turbulence; therefore,
!E the turbulence has a short correlation time when observed on a
moving blade.
!. These simplifying assumptions are made to enable a meaningful and useful

analysis of a complicated dynamic system to be completed with a reasonable

o
:} length of time, while capturing the essential features of the physical
= phenomena involved.
l . Summary of Important Results: Q%;
¢ S
(1) Turbulence plays two distinct roles in rotor dynamics: (a) as parametric g;;
ASC
- <
-~ excitations which affect the motion stability, and (b) as external N2
el
~,
. excitations which cause random deviation from the idealized wmotions N
{ ®
- predicted by determinic analyses in which turbulence is ignored. N
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(2) Parawetric random excitations appear in the coefficients in the

o%alala
/.'-.'

equations of motion. In contrast, external excitations appear in the

—r
S

inhomogeneous terms on the right hand sides of the equations.

y
) ~, (3) Uncoupled flapping and coupled flapping-torsion are essentially linear
% ;j phenomena for which the turbulence components in the plane of blade
'( :1 rotation (horizontal components) are parametric and the turbulence
> .$ component normal to the rotational plane (vertical component) is
E :S' external.
{, . (4) Horizontal tutbulence'conponents de~stabilize the uncoupled flapping and
3 - coupled flapping-torsional motions. However, since these motions are
? s extremely stable for usual helicopter blade configuration and flight
'? conditions, the turbulence level must be unusually high in order for

;i unstable motion to occur.
E - (5) Coupled flapping—lagging motion is nonlinear. However, turbulence
_ ! induced random perturbation from the idealized no~turbulence motion is
% :; essentially linear. In the linearized equations for the perturbed
,; w motion, the vertical turbulence dominates, and it appears both in the
& .a coefficients and as inhomogeneous terms.
.
: - (6) The vertical turbulence component stabilizes the coupled flapping-

52 lagging motion by increasing the damping in the least-stable, lead-lag
y :% mode. It has the same effect as an increase in the profile drag
g N coefficient.
E E; (7) Vvhen a wmotion is stable, turbulence contributes to the random
} fluctuation from the average system response. Under a trim condition
; ?i which suppresses the first harmonics of flapping response, the effect of
N " turbulence, as measured by the standard deviation of the response, is of
x: - the same order of magnitude as the second harmonice in the deterministic
k3




\J:'
'l

4‘ [ ]
e

.ﬁﬁl{

AFAER™ ™
7e% "2

>

1

207 ~— vl

»
.

¢l

S s

y e * -

DAOMD .
PN

.v.' i @ 'n'

a8
OALA

Xora

7 7Y

a2k 3

] ST e
“l"“.‘.'
v

. P XOR
RN 1A &

v '.l!..l“
WY e

P
L T S

(a3 h
® 2 o+ 3 8
Tatatetat ] ..5

-
(]
n’a

AR

]
-
L]

o

rd

[ A 4

S

S

[
I

,“l ‘

-

r

Y

—1'/-

e % Wt

(i.e. idealized turbulence free) solution.

(8) The constant coefficient approximation using the method of multiblade
coordinates yields essentially the same stability results whether one
time—-averages both the stochastic and deterministic terms or time-
averages only the stochastic terms. The constant coefficient

approximation was found to be accurate only for trimmed rotors.

For additional information, the reader is referred to the publications listed

in the next section.
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